Screening-level Assessment of Uncapped Landfills in the Pinelands Area

New Jersey Water Monitoring Council Meeting, May 19, 2016

Project Background

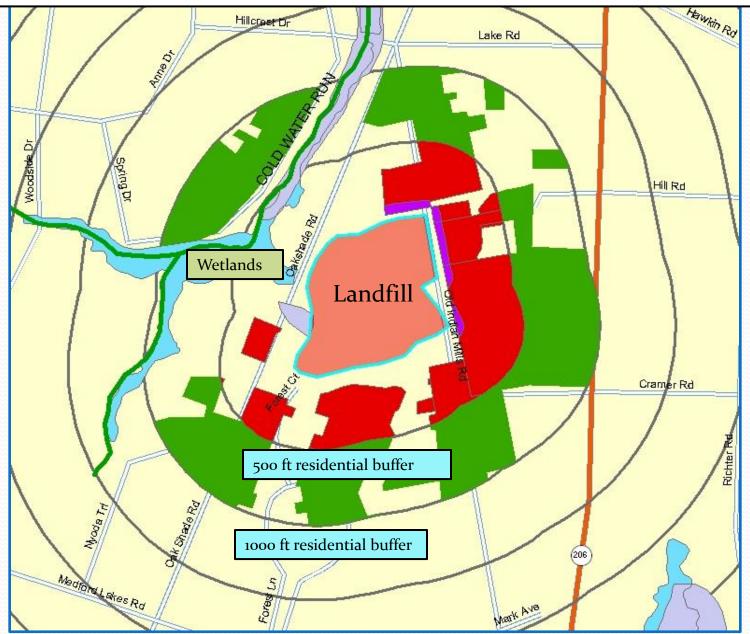
- There are at least 60 closed, uncapped landfills in the New Jersey Pinelands.
- Which of these pose environmental or health concerns, based on downgradient water quality?
- Which need more monitoring or remediation before redevelopment?"

Project objectives

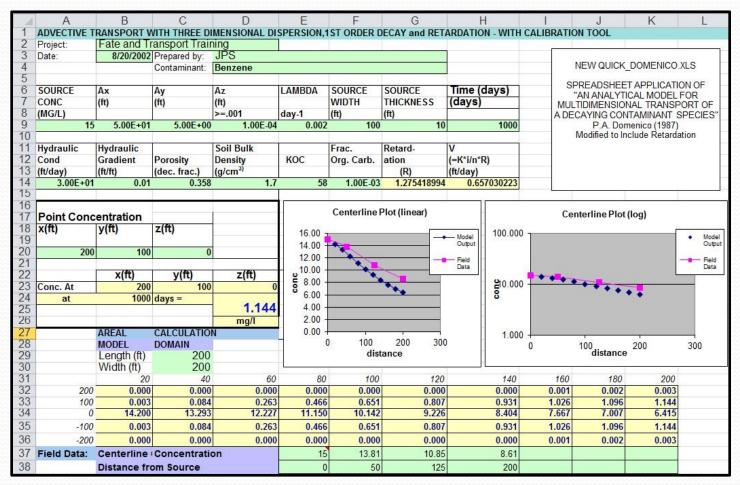
- Develop a screening tool for assigning levels of concern for closed, uncapped landfills
 - Based solute transport from landfills to receptors
 - Must consider concentrations of contaminants at receptors relative to regulatory concentrations
- Apply screening tool to landfills in the New Jersey Pinelands
 - Predict contaminant concentrations reaching receptors
 - Assess level of concern

Principal sources of Information

- Monitoring Well Lab Results
- GIS data (NJDEP and USGS)
- State and Federal Water-Quality Standards
- Published chemical property data for contaminants
- Solute transport model


Domenico approach to groundwater-transport model

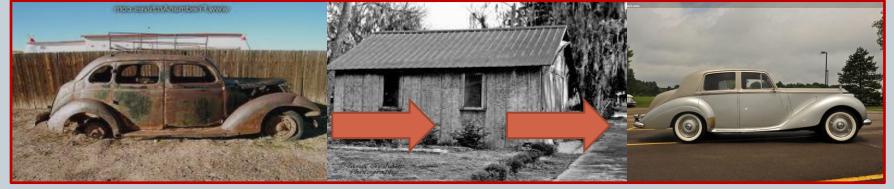
- Based on widely used transport equations
- Supported by the USEPA.
 - USEPS Center for Subsurface Modeling Support
 - BIOSCREEN, BIOCHLOR, FOOTPRINT, and REMChlor
- Spreadsheet version developed by PA DEP
 - "Quick Domenico"
- Estimates contaminant concentration downgradient from a source


Receptors were defined as:

- Nearest *stream* to landfill
- Nearest wetlands to landfill
- Nearest *residential area* to landfill

Geographical Information System (GIS) Map showing a Landfill in the Pinelands and Receptors

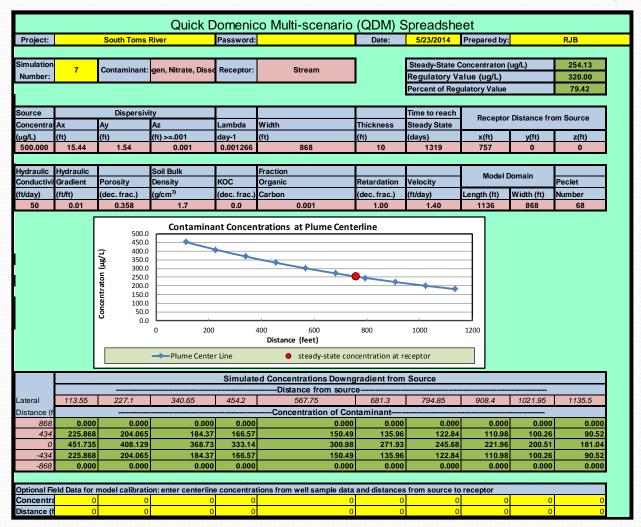
Quick Domenico model spreadsheet


Limitations: Only one scenario per worksheet, no provision for archiving scenarios, several input parameters could be calculated automatically (dispersivities, time to steady-state), graphics of limited value

Quick Domenico is a classic, But our new model is a Rolls Royce!

Old Model (Quick Domenico)

USGS Model Renovation Service (Ron Baker's office)


New Model (Quick Domenico Multiscenario)

Under the hood:

- -Up to 50 simulations on a single spreadsheet
- -Automatic calculation of appropriate run time and dispersivity
- -Regulatory values of contaminants for comparison to model outputs

Quick Domenico Multi-scenario (QDM)

A simulation (from numbers 1-50 is selected, and all parameters and results for that simulation are shown in the spreadsheet. Results as a percent of a regulatory value also are shown.

QDM: User-input parameters

			Source	Decay constant	Source	Source	Hydraulic	Hydraulic		Soil Bulk		Fraction				Regulatory
Simulation			Concentration	Lambda	Width	Thickness	Conductivity	Gradient	Porosity	Density	KOC	Organic	←-Distance to Receptor-→		Value	
Number	Receptor	Contaminant	(ug/L)	(days ⁻¹)	(ft)	(ft)	(ft/day)	(ft/ft)	(dimensionless)	(g/cm3)		Carbon	x(ft)	y(ft)	z(ft)	(ug/L)
1	Stream	Chloride	40666.7	0	868	10	50	0.010	0.358	1.70	0.0	0.001	757	0	0	230000.00
2	Wetlands and Hydric So	Chloride	40666.7	0	868	10	50	0.010	0.358	1.70	0.0	0.001	7	0	0	230000.00
3	Residential	Chloride	40666.7	0	868	10	50	0.010	0.358	1.70	0.0	0.001	250	0	0	250000.00
4	Stream	Nitrogen, Amm	17100.0	0.1	868	10	50	0.010	0.358	1.70	3.1	0.001	757	0	0	200.00
5	Wetlands and Hydric So	Nitrogen, Amm	17100.0	0.1	868	10	50	0.010	0.358	1.70	3.1	0.001	7	0	0	200.00
6	Residential	Nitrogen, Amm	17100.0	0.1	868	10	50	0.010	0.358	1.70	3.1	0.001	250	0	0	3000.00
		Nitrogen, Nitrat		0.001265753	868	10	50	0.010	0.358	1.70	0.0	0.001	757	0	0	320.00
8	Wetlands and Hydric So	Nitrogen, Nitrat	500.0	0.001265753	868	10	50	0.010	0.358	1.70	0.0	0.001	7	0	0	320.00
9	Residential	Nitrogen, Nitrat	500.0	0.001265753	868	10	50	0.010	0.358	1.70	0.0	0.001	250	0	0	10000.00
10																
11																
12																
13																
14																
15																
16 17																
18																
19																
20																

- Up to 50 scenarios are entered and archived per landfill
- Regulatory values are input

QDM: Automatically-calculated input parameters

	←Dispersivity>		←Simulation Time→				Conc. At		% of	
Simulation	Ax	Ay	Az	Time	Time	Model	Model	Steady	Velocity	Regulatory
Number	(ft)	(ft)	(ft)	(days)	(years)	Length (ft)	Width (ft)	State	(V)	Value
1	15.44	1.5	0.001	1355	3.7	1136	868		1.40	
2	0.00	0.0	0.001	13	0.0	11	868		1.40	
3	8.13	0.8	0.001	448	1.2	375	868		1.40	
4	15.44	1.5	0.001	587	1.6	1136	868		1.38	
5	0.00	0.0	0.001	13	0.0	11	868		1.38	
6	8.13	0.8	0.001	248	0.7	375	868		1.38	
7	15.44	1.5	0.001	1319	3.6	1136	868	254.13	1.40	79.4
8	0.00	0.0	0.001	13	0.0	11	868		1.40	
9	8.13	0.8	0.001	441	1.2	375	868		1.40	
10										
11										
12										
13										
14										
15										
16										
17										
18 19										
20										

- Dispersivities, time to steady-state and model dimensions are calcualted
- Contaminant concentration and % of regulatory value are calcualted for the selected simulation number (in this case 7).

Model limitations

- Non-varying dispersivity
- Assumption of receptors being downgradient (model allows for other options)
- Literature reaction rates and KOC values apply
- No attenuation from precipitation, storage, or discharge into streams between source and receptor
- Source contaminant concentrations are constant and not depleted
- Source geometry = landfill geometry

Applying QDM to Pinelands landfills

- Identify distance from landfill to nearest receptors:
 - Stream
 - Wetlands
 - Residential
- Simulate concentration of Cl⁻ at each receptor:
 - Most conservative, "worst case" scenario
- Select other contaminants to be simulated
 - Based on concentration and detection frequency

Criteria for Selecting contaminants to simulate

- Frequently detected
- High concentration relative to regulatory standards
- Informed judgment

Concentrations of contaminants used in models

 Highest average daily concentration among all monitoring wells samples

Assessing Vulnerability of Groundwater to Contaminants of Concern (COCs) from Landfills

- Level of Concern = Unknown
 - Data are insufficient to characterize the presence of COCs.
- Level of Concern = Low
 - COCs do not reach receptors at concentrations greater than the Practical Quantitation Limit (PQL).
- Level of Concern = Moderate
 - COCs reach receptors at concentrations greater than the PQL but less than 50% of any relevant regulatory standard.
- Level of Concern = High
 - COCs reach receptors, which may be coincident with the landfill, at concentrations greater than or equal to 50% of one or more relevant regulatory standards.

Vulnerability assessment

	Level of Concern for Sp	ecific Analytes and Recep	tors				
	Organics and Inorganics Excluding	Nutrients	Nutrients				
	Chloride	Ammonia as N	Nitrate as N	Total P			
Stream	High (A), but not a COC	Low	High (A)	Low			
Wetland or Hydric Soil	High (A), but not a COC	High (A)	High (A)	Low			
Residential	High (A), but not a COC	Low	Moderate	Low			

	mary of Domenico Results: Level of Concern (Excluding Nu	
Level of		Meets
Concern	Criteria	criteria?
Unknown	Data are insufficient to characterize the presence of COCs.	No
	COCs do not reach receptors at concentrations greater than the	Yes (non-
Low	practical quantitation limit (PQ).	nutrients)
	COCs reach receptors at concentrations greater than the PQL but less	
Moderate	than 50% of any relevant regulatory standard.	No
	COCs reach receptors at concentrations greater than or equal to 50% of	
High (A)	one or more relevant regulatory standards.	Yes (nutrients)
	Receptor coincides with landfill location, where COC concentration is	
High (B)		No

Domenico simulation indicates that the level of concern for this landfill is of low for non-nutrients and high for nutrients.

Summary of Model Results: Number of Landfills for Each Level of Concern

Total landfills studied:					
	Unknown level of concern (insufficient data):	18			
	Low level of concern:	12			
	Moderate level of concern:	O			
	High level of concern:	18			

Summary of Model Results (continued)

 Contaminants responsible for high level of concern

Arsenic

(2 landfills)

• Barium

(3 landfills)

Benzene

(1 landfills)

Cyanide

(1 landfill)

Lead

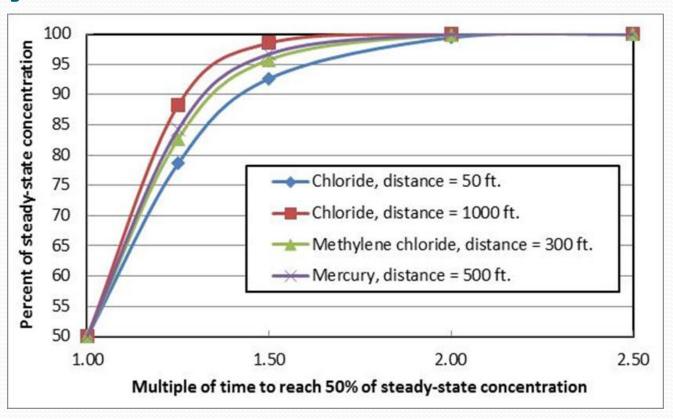
(8 landfills)

Mercury

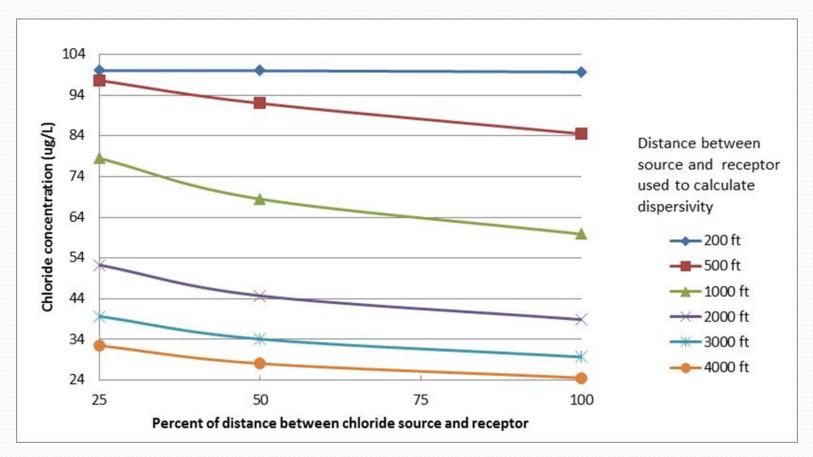
(2 landfills)

Selenium

(1 landfill)

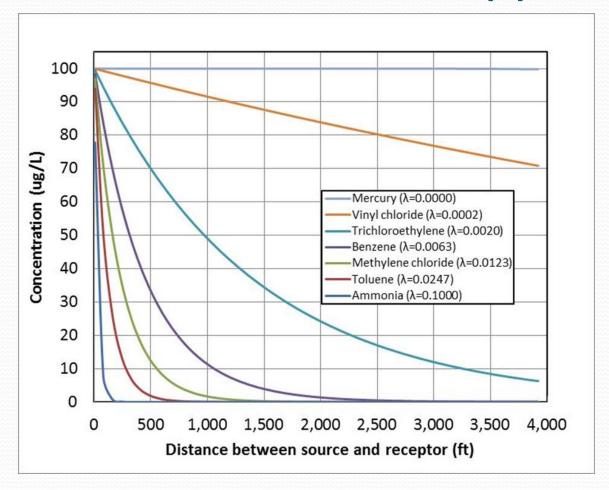

Summary: Results of This Study

- Groundwater quality under 30 landfills
 - Based on historical water-quality data
- Modeling tool to assess down-gradient threat levels
 - Screening-level Microsoft Excel application "Quick Domenico Multiscenario"
- Results of modeling for 30 landfills
 - Water quality at down-gradient receptors
- Levels of concern at 30 landfills
 - Based on regulatory contaminant concentration and modeling results
- Journal article
- Potential future related projects with NJDEP

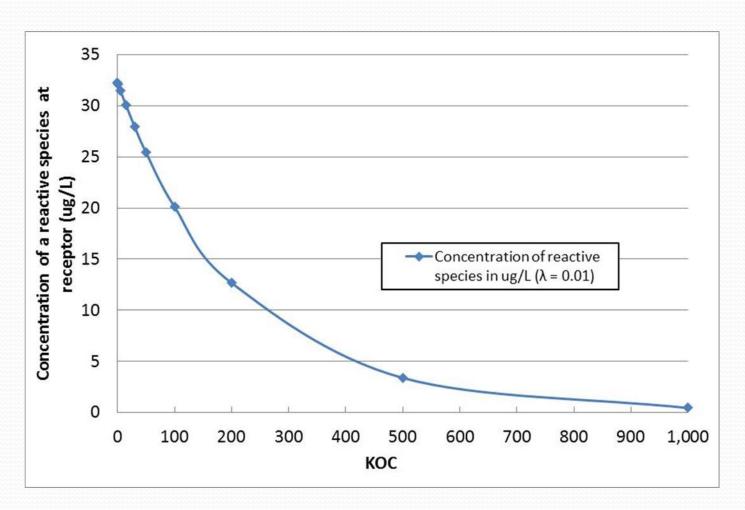

Determining time required to reach steady state conditions

- Domenico model can be solved for time required to achieve 50% of the steady-state concentration at a specified distance from the source:
 - $t_{1/2} = Rx/(V_s(1+4\alpha_x\lambda R/V_s)^{0.5})$
- A simulation for time = $t_{1/2}$ gives ½ x $C_{\text{(steady state)}}$
- Determine the factor F which, when multiplied by $t_{1/2}$, is the simulation time needed to achieve $C_{(steady\ state)}$
- F x $t_{1/2}$ = time to reach steady-state conditions

Determining time required to reach steady state conditions



Model sensitivity to longitudinal dispersivity


Model (contaminant concentration) is relatively insensitive to longitudinal dispersivity for conservative contaminants at distances of 200-4000 ft from source

Model sensitivity to contaminant first-order reaction rate constant (λ)

Model (contaminant concentration) is highly sensitive to contaminant reaction rate (λ), which varies widely among environments and is an important source of uncertainty in this and other reactive transport models.

Model sensitivity to KOC

Simulated concentration is highly sensitive to KOC when the contaminant is not conservative (λ >o)